Equivalence of Graded Module Braids and Interlocking Sequences
نویسنده
چکیده
The category of totally ordered graded module braids and that of the exact interlocking sequences are shown to be equivalent. As an application of this equivalence, we show the existence of a connection matrix for a totally ordered graded module braid without assuming the existence of chain complex braid that induces the given graded module braid.
منابع مشابه
Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملGraded Prime Ideals Attached to a Group Graded Module
Let $G$ be a finitely generated abelian group and $M$ be a $G$-graded $A$-module. In general, $G$-associated prime ideals to $M$ may not exist. In this paper, we introduce the concept of $G$-attached prime ideals to $M$ as a generalization of $G$-associated prime ideals which gives a connection between certain $G$-prime ideals and $G$-graded modules over a (not necessarily $G$-graded Noetherian...
متن کاملOn Finite Type 3-manifold Invariants Ii
The purpose of the present paper is, among other things, to relate the seemingly unrelated notions of surgical equivalence of links in S 3 ((Le1]) and the notion of nite type invariants of oriented integral homology 3-spheres, due to T. Ohtsuki Oh]. The paper consists of two parts. In the rst part we classify pure braids and string links modulo the relation of surgical equivalence. We prove tha...
متن کاملOn graded almost semiprime submodules
Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring with a non-zero identity and $M$ be a graded $R$-module. In this article, we introduce the concept of graded almost semiprime submodules. Also, we investigate some basic properties of graded almost semiprime and graded weakly semiprime submodules and give some characterizations of them.
متن کاملON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...
متن کامل